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Abstract. We investigate the effect of the surface term of the linearly divergent diagrams 
on the supercurrent anomaly. It is found that such a term can not be used to shift the 
anomaly in the conformal part only. As a consequence the multiplet structure of currents 
seems to be violated. 

The issue of anomalies in the framework of supersymmetric theories has been an 
interesting question since the early work by Ferrara and Zumino (1975). They have 
shown that the currents of supersymmetric theory and their anomalies lie within 
corresponding supersymmetric multiplets in the case of the massive Wess-Zumino 
model. It has been argued later that it is true for all anomalies (Lang 1978), at least 
in global supersymmetry. The first doubts on this question were raised by the work 
of Abbott et a1 (1977) who explicitly calculated the supercurrent anomaly for N = 1 
Yang-Mills theory using the Adler (1969) and Rosenberg (1963) method and argued 
that the coefficient of the anomaly was not consistent with multiplet structure (at the 
one loop level). 

This was shown to be an incorrect statement by explicit calculation (Lang 1978), 
but can easily be confirmed from multiplet structure at any order using a known form 
of the trace (Chanowitz and Ellis 1973, Collins et a1 1967) (or chiral) anomaly. 
Explicitly, if B is the coefficient of the trace anomalyt, multiplet structure is satisfied 
with 4B being the coefficient of the supercurrent anomaly and in the case of adjoint 
SU(2) representation it gives 3g2/47r2 which is the correct coefficient of Abbott et al. 

However, the purpose of this letter is not to prove the above, but to make some 
comments on the multiplet structure of currents and anomalies that has escaped 
attention and will be complementary to some statements in Abbott et a1 (1977). The 
discussion is relevant to all later work on this subject since they essentially agree with 
it. 

Let us briefly review the known results relevant to this paper. It has been established 
that the supercurrent of N = 1 supersymmetric Yang-Mills theory has an anomaly 
which forms a multiplet together with the chiral and trace anomalies. Enforcing gauge 
invariance, the supercurrent anomaly was found in the PoincarC part of the superconfor- 
mal group (YJ, # 0) by Abbott et a1 (1977), confirmed by the point-splitting technique 
(Inagaki 1978) and the Siege1 dimensional reduction (RDR) scheme (Majmudar et a1 
1980) and contradicted by Curtright (1977) who found an anomaly in the conformal 
part of the superconformal group ( y J  # 0). 

t B E  p ( g ) / 2 g  = -(3C( G)/32&)g2 (one loop): C = 2 for I = 1 SU(2) multiplet. 
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It has been stated that the two forms of anomaly are not incompatible since they 
can be transformed into each other by the routing of momenta in Feynman graphs, 
recalling the familiar situation in the chiral case. 

We would like to show in this letter that this hope is not fulfilled i.e. it is not a 
matter of simply redefining momenta that would shift the anomaly from a”J, # 0 into 
yJ # 0. This will have important implications on the multiplet structure of currents 
and anomalies. 

The model is N = 1 supersymmetric Yang-Mills theory described by a vector 
multiplet in the adjoint representation of SU(2) whose Lagrangian is 

CJ= -‘Fa p p  FRBa + f i @ W  (1) 

with the action invariant under supersymmetry transformations 

The theory is invariant under conformal supersymmetry described by charges Q 
(PoincarC part) and S (conformal part) defined as space integrals of the time component 
of supercurrents 

JF = iF:BaRBt,ba (4) 

K, = -i yxJw ( 5 )  

The conditions of conformal supersymmetry are 

aFJ, = o 
yPJ, = 0. (7) 

CY”’, = - (3g2/4d)(d,A~ -ad:)( yF8&).  (8) 

At the quantum level the supercurrent has an anomaly (Abbott et a1 1977)t 

However, in calculating this anomaly by the Adler-Rosenberg method the contribu- 
tion from the surface terms has been omitted as being ambiguous. Following the Gross 
et a1 (1972) prescription for chiral anomaly it is these terms that are relevant for the 
shift of anomaly from one part to the other (i.e. rerouting the momenta and without 
such terms in supersymmetric cases we are left with the hope that the same is true for 
the supercurrent anomaly). In order to evaluate the surface term let us define the full 
amplitude of the process j ,  -+ A,$ as 

T*(p. q1a) = T p ( p .  4 )  +Slr(n q1a) (9) 
where S, denotes the surface term and a is the arbitrary routing of momenta. The 
diagrams that are formally linearly divergent are given in figure 1 .  

It is interesting to notice that the third diagram gives no surface term. Independently 
of the y matrix structure we can evaluate the surface term to be 

sZp = AT’( aa6, + aPaaw + ~ ~ 6 ~ ~ ) .  (10) 

The full surface term, taking into account the y matrix structure of each diagram and 

t We would like to mention that from now on the identity P J  = 0 is to be understood as an on-shell condition 
for matrix elements. 
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Figure 1. 

summing them up, can be found to bet 

s, = C[S(SCl.P + 18a,,) + 13(a,y, - -2a ,~ , ) I~~p)~ ,~q) .  (11 )  

Now, shifting the anomaly from one side to the other corresponds to finding such an 
a ( p ,  q )  that would kill the anomaly in one part i.e. (PJ, = 0) and restore it in the 
other (yJ # 0). To show that it is not possible we merely notice that 

yWSr(p,sla) = 0 (12) 

for any choice of a. This simply means that this condition remains independent of 
the routing and with any choice can not restore yJ # 0. This is essentially due to the 
fact that it is an algebraic constraint and depends only on the y matrix structure of 
the theory which is unchanged by a particular routing. There is no way to evaluate 
the anomaly in the yJ part. In fact, the only result that has done so (Curtright 1977) 
was obtained using regular dimensional regularisation which is known to be highly 
unsuitable for supersymmetric theories (Copper et al 1980) as it provides no supersym- 
metry preservation already at one loop level. Besides, a sample calculation was done 
for the Wess-Zumino model which has a completely different nature of anomalies. 

The results indicate that a regularisation scheme that would give the anomaly in 
conformal part, while preserving PoincarC supersymmetry hardly exists. 

However, yJ = 0 does not mean that we preserve conformal supersymmetry either, 
since apK, = -iyxapJ, # 0 (even if yJ = 0), rather that conformal supersymmetry is 
broken in full. 

To confirm the result let us look at the gauge and PoincarC invariance conditions. 
We choose a, = a p ,  +Pq, as the most general forms in terms of external momenta. 
The gauge condition is 

qPT, =constant a(qp)L -2PqYp)f4P)e,(q) (13) 

(P +qIP'T, =constant [(I30 -8P)qp,  - ( 2 6 a  +8P)Pqy,lf4p,e,,p,. (14) 

and PoincarC supersymmetry 

t The constant that appears will not be needed, but for the sake of detail it is C = ( rr2gZ/ 144) K ; where K 
is the casimir operator of adjoint representation of SU(2). 
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By explicit calculation (Majmudar et a1 1980) we know that with the choice of 
momenta as in figure 1, gauge invariance is maintained (q”T,(p, q )  =0) so we are 
forced to choose a = 0. With such a choice ( p  +q)’”s is even in form different from 
(8) and can not be used to cancel the anomaly so we have to choose p = O .  With the 
choice a = 0, p = 0 gauge invariance is maintained; but there is an anomaly in P J ,  # 0. 
From (10) we see that, in principle, there is a choice of a that could kill the anomaly 
(i.e. there is a general solution to (10) with a, p # 0 which gives the same form of the 
surface term as the anomaly), but we would lose gauge invariance. 

A similar result was found by Abbott er a1 (1977), but it has not been realised that 
the clash is between gauge invariance and PoincarC supersymmetry invariance, without 
disturbing yJ = 0. The attempt to preserve all three has no justification. 

Therefore we could conclude that the explicit calculation, always indicates the 
presence of an anomaly in P J ,  = O  and leads to breakdown of both Poincari and 
conformal supersymmetry and routing of momenta can not establish an anomaly only 
in the conformal part of supersymmetric group. This is a completely new result 
compared with the chiral case where such a shift is possible. 

On the other hand, we tend to believe that quantum corrections should not disturb 
PoincarC supersymmetry (Wess and Zumino 1974). The only way out would be to 
redefine the supercurrent as 

that could restore the right order of supersymmetry breaking (on shell) 

#J, = 0 (16) 

y”J, = 2cF$uaP+”.  (17) 

We would like to argue that even this is not the way out. The reason is the following. 
With redefinition (15) we have restored the multiplet structure of anomalies (which 
was broken by y J = O ) ,  but we have to preserve at the same time the structure of 
multiplet of currents. Any redefinition of any of the currents would immediately lead 
to the redefinition of the others if the multiplet of currents is to be preserved. This is 
not bad as long as such redefinition does not violate (12) (as it happens in the case 
of the Wess-Zumino model (Ferrara and Zumino 1975). Direct variations of (15) do 
not satisfy the structure of the multiplet of currents, and we were not able to find any 
consistent way of redefining the chiral current, and preserving the energy-momentum 
tensor (16) and (17) at the same time. This would merely indicate that formal 
redefinition (15), although giving (17), does not define the supersymmetric generator 
0, and thus we are back to (8). 

Knowing that the multiplet of currents is not unique, once conformal symmetry is 
broken, we tried to use a new minimal multiplet of West (1981), by redefining the 
chiral current as 

x, (18) 7:) = jl” - 

at the expense of gauge invariance hoping that this multiplet could lead to meaningful 
redefinitions, but without success. 
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We would finally conclude that the explicit calculation of supercurrent anomalies 
for N = 1 Yang-Mills theory indicates a breakdown of both the Poincari and the 
conformal part of the supersymmetry group at the quantum level and no way could 
be found to shift the anomaly in the conformal part only, as desired. In view of the 
renormalisation schemes that are supposed to preserve (at least global) supersymmetry, 
Siegel’s (1979) method seemed promising, but still gave an anomaly in the PoincarC 
part of the supersymmetry group (Majmudar et a1 1980). This can be understood in 
the light of recent results (Avdeev and Vladimir 1983) showing that such a method 
fails at high order of perturbation theory, while the multiplet structure of anomalies 
is supposed to hold at any order, anomalies being proportional to the p function. 

We are then only left with the restricted choice of possibly finite theories (at all 
orders) such as N = 4 or N = 8 as being anomaly free. The inclusion of matter multiplets 
is of no help since such a model is anomaly free only at the first order (Jones 1975). 

I would like to thank Professor A Salam of the ICTP, Trieste, Italy, where this work 
has started and Professor Q Ho-Kim of the University Lava1 where it has been 
completed. 
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